Abstract
Copper-β-amyloid 16 (Aβ16) complexes were investigated by electrospray ionization mass spectrometry (ESI-MS). Copper(i) and (ii) complexes were formed on-line in a microchip electrospray emitter by using a sacrificial copper electrode as the anode in positive ionization mode. In the presence of ascorbic acid in the peptide solution, the amount of Cu(i)-Aβ16 generated electrochemically was even higher. A kinetic model is proposed to account for the generation of copper complexes. The structure of Cu(i)-Aβ16 was investigated by tandem mass spectrometry (MS/MS), and the binding site of Cu(i) to Aβ16 was identified at the His13, His14 residues. Cu(ii)-Aβ16 was also investigated by MS/MS and, based on the unusual observations of a-ions, the two binding residues of His13 and His14 of Aβ16 to Cu(ii) were also confirmed. This approach provides direct information on Cu(i)-Aβ16 complexes generated in solution from metallic copper and gives evidence that both His13 and His14 are involved in the coordination of both Cu(i)- and Cu(ii)-Aβ16 complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.