Abstract

Monodefluoroborylation of polyfluoroalkenes has been achieved in a regioselective manner under mild conditions via copper catalysis. The method has shown an extremely broad scope of substrates, including (difluorovinyl)arenes, tetrafluoroethylene (TFE), (trifluorovinyl)arenes, and trifluoromethylated monofluoroalkenes. The choice of boron source was important for the efficient transformation of (difluorovinyl)arenes; (Bpin)2 was suitable for substrates with an electron-deficient aryl group and (Bnep)2 for those with an electron-rich aryl group. Derivatization of the (fluoroalkenyl)boronic acid esters to the corresponding potassium trifluoroborate salts has rendered the products easily isolable, which greatly improved the synthetic practicality of the monodefluoroborylation reaction. Stoichiometric experiments indicate that the fate of the regioselectivity depends on the mode of β-fluorine elimination, which depends on the substrate. Further transformation of the boryl group has allowed facile preparation of fluoroalkene derivatives as exemplified by the synthesis of a fluoroalkene mimic of atorvastatin, which potently inhibited the enzyme activity of HMG-CoA reductase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call