Abstract

Activation of the Si-B inter-element bond with copper(I) alkoxides produces copper-based silicon nucleophiles that react readily with aldehydes to yield α-silyl alcohols (that is, α-hydroxysilanes) after hydrolysis. Two independent protocols were developed, one employing a well-defined NHC-CuOtBu complex and one using the simple CuCN-NaOMe combination without added ligand. The mechanism of the aldehyde addition was investigated in detail by stoichiometric and catalytic experiments as well as NMR spectroscopic measurements. The primary reaction product of the addition of the Si-B reagent and the aldehyde (a boric acid ester of the α-silyl alcohol) and also the "dead-end" intermediate, formed in the competing [1,2]-Brook rearrangement, were characterized crystallographically. Based on these data, a reasonable catalytic cycle is proposed. The NHC-CuOtBu catalytic setup performs nicely at elevated temperature. A more reactive catalytic system is generated from CuCN-NaOMe, showing fast turnover at a significantly lower temperature. Both aromatic and aliphatic aldehydes are transformed into the corresponding α-silyl alcohols in good to very good yields under these mild reaction conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.