Abstract

In the extensive terrain of catalytic procedures for the synthesis of organic molecules, metal–organic frameworks (MOFs) as heterogenous catalysts have been investigated in a variety of chemical processes, including Friedel–Crafts reactions, condensation reactions, oxidations, and coupling reactions, and utilized owing to their specific properties such as high porosity, tuneability, extraordinary catalytic activity, and recyclability. The eminent copper-tailored MOF materials can be exceptionally dynamic and regioselective catalysts for click reactions (1,3-dipolar cycloaddition reaction). Considering the fact that Cu(I)-catalyzed alkyne–azide cycloaddition (CuAAC) reactions can be catalyzed by several other copper catalysts such as Cu (II)-β-cyclodextrin, Cu(OAc)2, Fe3O4@SiO2, picolinimidoamide–Cu(II) complex, and Cu(II) porphyrin graphene, the properties of sorption and reusability, as well as the high density of copper-MOFs, open an efficient and robust pathway for regimented catalysis of this reaction. This review provides a comprehensive description and analysis of the relevant literature on the utilization of Cu-MOFs as catalysts for CuAAC ‘click’ reactions published in the past decade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.