Abstract

The mechanism of copper (Cu) voids formation from electro-chemical plating (ECP) followed by Cu chemical mechanical polishing (CMP) are studied in Cu dual-damascene interconnection. The formation of Cu voids at metal lines is the main problem that causes not only the failure of via-induced metal-island corrosion but also yield loss. The galvanic theory and Cu lifting mechanism are proposed to explain the dependence of Cu-void performance on the Cu grain size and the benzotriazole (BTA, C 6H 5N 3) flow rates. In the integration process of Cu interconnects, it is found that the smaller Cu grain size in ECP conditions and less BTA flow rate in CMP processes cannot only reduce the number of Cu voids but also improve the wafer yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.