Abstract

We have investigated two thick film copper compositions used in thermoelectric device fabrication. Dynamic mechanical analysis, thermal mechanical analysis, tensile testing, Vickers microhardness, optical microscopy and scratch testing were performed. The small grain samples have much smaller microindentation areas and much higher hardness than large grain samples, a consequence of intergranular spaces and thus low cohesion in large grain materials. The small grain material without intergranular spaces has higher linear thermal expansivity α L up to 150 °C; above that temperature negative α L is seen, a consequence of orientation relaxation. The large grain material also exhibits α L < 0 but only above 275 °C or so, a consequence of sintering. The small grain material has a storage modulus 49% higher than the large grain material over a wide temperature range, again an effect of high cohesion in the former. The brittleness value for the large grain material is 3.5 times larger than for the small grains material. Both kinds of materials exhibit recovery in scratch testing in the overall range of 23–36%—a manifestation of viscoelasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.