Abstract

We present the results of numerical experiments considering the physical processes specific to the laser based on self-terminating atomic transitions of copper and study of the output characteristics of this laser numerically. The laser is pumped by trains of high-frequency (10−70 MHz) current oscillations with the repetition rate of 2−30 kHz. Inductive-type electrodeless discharge pumping is regarded. The calculations were carried out for a small set of the specified basic parameters providing a way to partially optimize the performance of the laser over its basic output characteristics and to reveal its features. The feasibility of efficient laser pumping by high-frequency discharge is demonstrated. In our numerical experiments the maximum value of the physical efficiency was about 6% and the maximum average laser output power was as high as 174 W. These values were obtained for a discharge chamber with a volume of 1.7 L.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call