Abstract

Copper vanadate (Cu2V2O7) nanoparticles were synthesized by a simple thermal decomposition method. The synthesized copper vanadate nanorods were characterized by X-ray diffraction analysis, and it is found that the synthesized sample belongs to monoclinic Cu2V2O7. Fourier transform infrared spectroscopy (FT-IR) confirms the formation of Cu–O bond in the sample. Ultraviolet–visible (DRS-UV–visible) spectroscopy and photoluminescence spectroscopy reveals the optical property of the Cu2V2O7 nanoparticles. The nanobar-like morphology was confirmed by both scanning electron microscopy and high resolution transmission electron microscopy. Further, the electrochemical sensing behavior of Cu2V2O7 nanoparticles was investigated by cyclic voltammetry using lidocaine as an analyte. The electrochemical sensing experiment suggests that the Cu2V2O7 nanoparticles will become a potential candidate in the field of drug sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call