Abstract
Human Wilson protein functions in the secretory pathway to insert copper ultimately into the multicopper oxidase ceruloplasmin and also plays a role in the excretion of excess copper to the bile. This copper-transporting P-type ATPase possesses six N-terminal cytosolic copper-binding domains contained within an ∼72 amino acid consensus motif and the first four of these domains, denoted WLN1–4, are implicated in copper acquisition from the metallochaperone HAH1, whereas the domains closest to the membrane portion of the enzyme, WLN5–6, are essential for copper transport across the membrane. In order to test our hypothesis that copper transfer occurs between domains in the N-terminus of Wilson protein, we expressed and purified to homogeneity copper-binding domains 1, 3, 4, 5–6, and 6, denoted by WLN1, WLN3, WLN4, WLN5–6, and WLN6, respectively. Since we determined WLN1 and WLN4 to have the highest and lowest isoelectric points (6.77 and 3.85, respectively) and thus are readily separated via ion exchange chromatography, we developed a copper transfer assay between these domains. We anaerobically incubated either Cu(I)-WLN1 with apo-WLN4 or apo-WLN1 with Cu(I)-WLN4, then separated these domains and quantified the amount of copper that migrates from one domain to another by ICP-MS. Regardless of whether we start with Cu(I)-WLN1 or Cu(I)-WLN4 as the initial copper donor, we demonstrate facile copper transfer between WLN1 and WLN4, thereby demonstrating the feasibility of copper transfer between these domains in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.