Abstract

Copper is among the major heavy metal contaminants in the environment with various anthropogenic and natural sources. Human health risk from heavy metal bioaccumulation in vegetables has been a subject of growing concern in recent years. To investigate Cu phytotoxic effects and bioaccumulation in the popular vegetable Chinese cabbage (Brassica pekinensis Rupr) as well as the implications for human health due to Cu in the vegetable supply, seed germination and pot culture experiments with this vegetable were carried out. Six levels (0, 0.008, 0.031, 0.125, 0.5, and 2.0 mM/L) and 3 levels (0, 0.2, and 1.0 mM/kg) of Cu treatments were performed for the seed germination and pot culture experiments, respectively. The LC(50) of Cu for seed germination of Chinese cabbage was 0.348 mM/L. In the pot culture experiments, Cu treatments significantly increased electrolyte leakage and peroxidase activity of shoot tissues, demonstrating Cu phytotoxicity to the plants. On the other hand, Cu treatments significantly stimulated, instead of reduced, chlorophyll content. Cu treatments did not show a significant effect on shoot biomass. Compared to the control, Cu treatments significantly elevated the Cu content of the shoots-9.9, 42.5, and 119.0 mg/kg (DW) of Cu were detected in the 0, 0.2, and 1.0 mM/kg treatments, respectively. These results showed that although the plants accumulated an elevated copper content and suffered damage to some extent under Cu treatment, they looked healthy. It was suggested that Chinese cabbage with an elevated Cu content and without showing visible symptoms of damage possibly could cause a risk to human health from the transfer of the metal in food.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call