Abstract

An experimental study on an innovative contrast agent is presented. This work demonstrates that copper sulfide in the form of small-sized nanoparticles can be exploited in photoacoustic imaging. An advantage of this material is strong light absorption in the near-infrared range, especially in the transparency windows of biological tissues. In order to yield a proper contrast, light absorption must be followed by heat release with high efficiency. Therefore, it is important to evaluate the photochemical conversion efficiency of the material. We applied a method that is strictly related to photoacoustic applications. The nanoparticles were produced according to a well-established synthesis. Subsequently, they were diluted in pure water to obtain an extinction <0.2/cm at 1064 nm. The photoacoustic signals, generated by 1064 nm laser excitation, were analyzed as a function of concentration and incident laser energy below 70 μJ /pulse. The signals were carefully compared with those of a reference aqueous solution, containing a light-absorbing ionic solute. Data analysis yielded a light-to-heat conversion efficiency 1.0 (±0.1). We discuss this result by comparison with related studies on other types of copper sulfide nanoparticles, where the conversion efficiency reportedly varied from 33% to 93%. The high value determined in the present study possibly indicates that resonant light scattering and luminescence are negligible for our material system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.