Abstract

The fast development of electronic industries and stringent requirement of recycling waste electronics have produced a large amount of metal-containing waste sludge. This study developed a waste-to-resource strategy to beneficially use such metal-containing sludge from the production and recycling processes of printed circuit board (PCBs). To observe the metal incorporation mechanisms and phase transformation processes, mixtures of copper industrial waste sludge and kaolinite-based materials (kaolinite and mullite) were fired between 650 and 1250 °C for 3 h. The different copper-hosting phases were identified by powder X-ray diffraction (XRD) in the sintered products, and CuAl2O4 was found to be the predominant hosting phase throughout the reactions, regardless of the strong reduction potential of copper expected at high temperatures. The experimental results indicated that CuAl2O4 was generated more easily and in larger quantities at low-temperature processing when using the kaolinite precursor. Maximum copper transformations reached 86% and 97% for kaolinite and mullite systems, respectively, when sintering at 1000 °C. To monitor the stabilization effect after thermal process, prolonged leaching tests were carried out using acetic acid with an initial pH value of 2.9 to leach the sintered products for 20 days. The results demonstrated the decrease of copper leachability with the formation of CuAl2O4, despite different sintering behavior in kaolinite and mullite systems. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering copper sludge with aluminosilicate materials, and suggests a promising and reliable technique for reusing metal-containing sludge as ceramic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.