Abstract

In the low doping limit, a high Tc cuprate preserves a two band structure. O2p electrons are itinerant, Cu3d electrons are localized. Therefore the two component model is suitable to describe nuclear spin relaxation at copper sites. In addition to the Korringa process, the hyperfine interaction between nuclear spins and local electron spins is considered, which gives rise to the anomalous relaxation rate 1/T1 = a + bT. The decrease of the susceptibility near Tc, as shown by the Knight shift measurements, can be attributed to the ordering of local spins and the pairing of the uncompensated spins created by holes at the oxygen sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.