Abstract

Single-atom catalysts with extraordinary catalytic activity have been receiving great attention in tumor therapy. However, most single-atom catalysts lack self-propulsion properties, restricting them from actively approaching cancer cells or penetrating the interior of tumors. Herein, we design N-doped jellyfish-like mesoporous carbon nanomotors coordinated with single-atom copper (Cu-JMCNs). It is a combination of single-atom nanocatalytic medicine and nanomotor self-propulsion for cancer therapy. The Cu single atom can catalyze H2O2 into toxic hydroxyl radical (•OH) for chemodynamic therapy (CDT). Near-infrared light triggers Cu-JMCNs to achieve self-thermophoretic motion because of the jellyfish-like asymmetric structure and photothermal property of carbon, which significantly improves the cellular uptake and the penetration of three-dimensional tumors. In vivo experiments indicate that the combination of single-atom Cu for CDT and near-infrared light propulsion can achieve over 85% tumor inhibition rate. This work sheds light on the development of advanced nanomotors with single-atom catalysts for biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.