Abstract
Electrocatalytic nitrate reduction reaction (NO3RR), as a promising alternative to the Haber-Bosh process, provides new opportunities for ammonia (NH3) production from the environmental and energy viewpoint. However, the NH3 yield rate and selectivity for NO3RR are still limited due to the lack of efficient electrocatalysts. Herein, we demonstrate an active and selective copper single-atom catalyst (Cu-N-C) for nitrate reduction to NH3. The complete conversion of nitrate (50 mg L−1 NO-3-N) was achieved at −1.5 V vs. SCE with a high NH3 yield rate (9.23 mg h−1 mg−1cat.) and selectivity (94%). Remarkably, Cu-N-C dramatically inhibited the formation of toxic nitrite and double-nitrogen products due to the enhanced nitrite adsorption and restrained N-N coupling that led to nitrate deep reduction to NH3. The remaining nitrate (0.06 mg L−1) and nitrite (1 mg L−1) fully meet the drinking-water standards. Density functional theory simulations reveal that the single-site nature of Cu-N-C facilitated the reduction of HNO*3 to NO*2 and NH*2 to NH3, thus leading to the selective nitrate reduction to NH3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.