Abstract

Chemodynamic therapy has been appealing for effective cancer treatment. Particularly, Fenton-like reactions catalyzed by Cu2+-based nanoparticles showed promising prospects. Herein, we fabricated copper-selenocysteine quantum dots (Cu-Sec QDs) with the majority of Cu+ by a facile and robust thermal titration process. No high temperature or pressure is needed for this synthetic route of QDs. The selenocysteine functioned as the reducing agent as well as the stabilizer, circumventing the poor water solubility and stability, leading to enhanced biocompatibility. The existence of Cu+ endowed the QDs the ability to catalyze the Fenton-like reaction without an extra reduction reaction of Cu2+ to Cu+. Moreover, the strong absorption in the near-infrared-II region (1000-1300 nm) of the final Cu-Sec QDs is in great favor of the chemodynamic therapy via the photothermally enhanced Fenton-like reaction. And the Cu-Sec QDs exhibited obvious cytotoxicity to various cancer cell lines. We believe that this facile and robust synthetic approach could open up another method for the fabrication of quantum dots toward the potential Fenton-like reaction-based applications in biological fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.