Abstract

A series of Ag1- xCu xInS2 nanocrystals (NCs) spanning from 0 ≤ x ≤ ∼1 was synthesized by partial cation exchange to identify copper's contributions to the electronic structure and spectroscopic properties of these NCs. Discrete midgap states appear above the valence band upon doping AgInS2 NCs with Cu+ (small x). Density functional theory calculations confirm that these midgap states are associated with the 3d valence orbitals of the Cu+ impurities. With increasing x, these impurity d levels gradually evolve to become the valence-band edge of CuInS2 NCs, but the highest-occupied orbital's description does not change significantly across the entire range of x. In contrast with this gradual evolution, Ag1- xCu xInS2 NC photoluminescence shifts rapidly with initial additions of Cu+ (small x) but then becomes independent of x beyond x > ∼0.20, all the way to CuInS2 ( x = 1.00). Data analysis suggests small but detectable hole delocalization in the luminescent excited state of CuInS2 NCs, estimated by Monte Carlo simulations to involve at most about four copper ions. These results provide unique insights into the luminescent excited states of these materials and they reinforce the description of CuInS2 NCs as "heavily copper-doped NCs" in which photogenerated holes are rapidly localized in copper 3d-based orbitals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.