Abstract

A new compound, Rb2Cu3(P2O7)2, has been obtained from the melt in the Rb–Cu–P–O system. Its monoclinic crystal structure was determined by single-crystal X-ray diffraction: space group P21/c, Z = 2, a = 7.7119(8) Å, b = 10.5245(9) Å, c = 7.8034(9) Å, β = 103.862(5)° at 293 K, R = 0.030. The copper ions show coordination number (CN) 6 (4+2, distorted tetragonal bipyramidal). Trimers of [CuO6] polyhedra sharing cis-edges form together with diphosphate groups of two tetrahedra [P2O7] a microporous 3D framework with channels open along the c direction. The rubidium ions positioned in the channels show CN 10. The new phase is isotypic to Cs2Cu3(P2O7)2. The regular changes in cell dimensions in the row Cs2Cu3(P2O7)2 → Rb2Cu3(P2O7)2 are caused by the compression of channel volumes due to decrease of the Cu–O–P angles in the framework windows. An electron spin resonance study indicates appearance of short range magnetic correlations below ∼120 K, long range magnetic order takes place at TN = 9.2 K as follows from magnetization and specific heat measurements. First principles calculations of the magnetic exchanges indicate that the effective Cu–Cu hopping interactions corresponding to super–super-exchange paths involving P atoms are much stronger than those within the edge-sharing Cu2–Cu1–Cu2 trimer units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.