Abstract

It is necessary to study the mechanism of resistance to heavy metals in microbiological processes. In this study, Ochrobactrum MT180101 was used as the microbial source of an membrane bioreactor to investigate its degradation efficiency for electroplating wastewater and the copper-resistant mechanism. Meanwhile, excitation emission matrix-parallel factor, scanning electron microscope, atomic force microscope, fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and proteome analyses were applied to explain the comprehensive mechanism of the Ochrobactrum MT180101 resisting heavy metal toxicity. The results indicated that the Ochrobactrum MT180101 resisted heavy metal toxicity with the following pathways: i) binding metal cations on cell wall surfaces, ii) generating microbial products such as protein to chelate and stabilize the metal cations, iii) bio-transporting heavy metals from the intramembrane to the outer membrane by means of intracellular transport, and iv) reducing heavy metals through enzyme-mediated biotransformation. The results ensure that Ochrobactrum MT180101 was a copper-resistant bacterium that can be used in the pretreatment or deep treatment of electroplating wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.