Abstract

To isolate and characterize copper-resistant halophilic bacteria from the polluted Maruit Lake, Egypt and identify the role of plasmids in toxic metal resistance. We isolated strain MA2, showing high copper resistance up to the 1.5 mmol l(-1) concentration; it was also resistant to other metals such as nickel, cobalt and zinc and a group of antibiotics. Partial 16S rRNA analysis revealed that strain MA2 belonged to the genus Halomonas. Copper uptake, measured by atomic absorption spectrophotometery, was higher in the absence of NaCl than in the presence of 0.5-1.0 mol l(-1) NaCl during 5-15 min of incubation. Cell fractionation and electron microscopic observation clarified that most of the copper accumulated in the outer membrane and periplasmic fractions of the cells. Plasmid screening yielded two plasmids: pMA21 (11 kb) and pMA22 (5 kb). Plasmid curing resulted in a strain that lost both the plasmids and was sensitive to cobalt and chromate but not copper, nickel and zinc. This cured strain also showed weak growth in the presence of 0.5-1.0 mol l(-1) NaCl. Partial sequencing of both plasmids led to the identification of different toxic metals transporters but copper transporters were not identified. The highest cell viability was found in the presence of 1.0 mol l(-1) NaCl at different copper concentrations, and copper uptake was optimal in the absence of NaCl. Plasmid pMA21 encoded chromate, cobalt, zinc and cadmium transporters, whereas pMA22 encoded specific zinc and RND (resistance, nodulation, cell division) efflux transporters as well as different kinds of metabolic enzymes. Copper resistance was mainly incorporated in the chromosome. Strain MA2 is a fast and efficient tool for copper bioremediation and the isolated plasmids show significant characteristics of both toxic metal and antibiotic resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.