Abstract

ABSTRACT This study presents a kinetic determination of copper removal from a real jewelry industry wastewater, with removal reaching 82.49% at 37°C, using fast galvanic pulse electrochemical technique in a process lasting 115 min. In the temperature range from 20 to 40°C, the mathematical model of the pseudo-first-order irreversible rate equation, with a correlation coefficient of 0.99, described the process behaviour. In this same temperature range, the Arrhenius’ equation described the system, in which the temperature increase favoured the reaction kinetics. The scanning electron microscope (SEM), with energy-dispersive X-ray detector (EDX), X-ray photoelectron spectroscopy (XPS) results, and the mathematical model fitting at the temperatures of 10 and 50°C indicated the formation of copper oxide I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.