Abstract
Copper corrosion in alkaline solutions is inhibited by the formation of self-assembled monolayers of aromatic thiols, made of either benzenethiol or 2-naphthalenethiol or 4-acetamidothiophenol. Electrochemical experiments, based on voltammetry and impedance spectroscopy, point out the much lower reactivity of copper surfaces towards oxidation, when covered by compact adlayers of the above molecules bonded through the S atom. The peculiar shape and peak position in the voltammetric reduction of residual oxides grown on modified metal surfaces suggest that they are due to Cu(I) suboxides, probably grown on reactive metal defects. XPS experiments have confirmed that the aromatic adlayers are still covering most of the Cu surface even after 1 h immersion in 0.5 M NaOH. The main changes in Auger and XP spectra indicate the formation of much less Cu(2)O in the protected samples than in the corresponding bare Cu aged in NaOH. From the experimental data the presence of defective copper oxides on modified Cu has been deduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.