Abstract

The present study investigated the effect of copper on photosynthesis, antioxidant potential, and anatomical response of aquatic fern, Salvinia cucullata, with a view to ascertain its phytoremediation potential. Plants were exposed in hydroponics for 21days to different Cu concentrations (10, 15, 20, and 30mg/L). Significant declines in chlorophyll, carotenoids, and soluble proteins, as a function of Cu proportion were observed. Lipid peroxidation was also evident, which implied reactive oxygen species (ROS) generation. However, both root and leaf tissues responded remarkably to the ROS produced, by inducing superoxide dismutase (1.6-6.5 times), catalase (1.5-5.4 times), guaicol peroxidase (1.5-7.2 times), and ascorbyl peroxidase (1.3-4.7 times) over the control. The plant showed best phytoremedial activity within Cu range of 10-15mg/L, with maximum accumulation of 2956±82.6μg/g dw., at 15mg Cu/L and showed efficient root to shoot translocation (translocation factor, TF>1) at this range, which is the stipulated minimum requirement to be a hyperaccumulator. The capacity of metal extraction from environment to leaf (extraction coefficient, EC) was also high (EC=73-197). However, at higher doses (20-30mg/L), the plant resorted to an exclusion strategy, whereby, more metal accumulation was observed in root than in leaf. The plant conferred suitable remediation attributes by showing minimal root and leaf anatomical damages along with high Ca peaks in both the tissues, and rapid leaf stomatal closure, all of which probably helped in the Cu induced stress mitigation. Due to its widespread availability, fast growth, ability to grow in myriads of polluted environment, and having hardy physiology, this plant can be suggested for use as a suitable Cu phytoremediator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.