Abstract

The necessary step of directly adding hydrogen peroxide (H2O2) into the detection system in traditional immunoassays hampers their applications as a portable device for point-of-care analysis due to the unstable liquid form of H2O2. Herein, a strategy of self-supplying H2O2 and signal amplification triggering by copper peroxide nanodots encapsulated (CPNs) in metal-organic frameworks (ZIF-8) was proposed in an immunoassay for dual-signal detection of bisphenol A (a typical emerging organic pollutant), which was further fabricated as a lab-in-a-tube device integrated with a smartphone sensing platform. Herein, CPNs@ZIF-8 was modified on the antibody against bisphenol A; after the competitive binding of analytes, coating antigens, and antibodies, the released H2O2 and Cu2+ from encapsulated CPNs under the acidic condition will trigger a Fenton-like reaction to generate ·OH for oxidization of TMB; meanwhile, Cu2+ could quench the fluorescence of GSH-Au NCs, resulting in dual-mode signals for measurements. Most importantly, self-supplying H2O2 with high stability was undertaken by CPNs, and the remarkably increased signal molecule (CPN) loading was ascribed to the excellent capacity of metal-organic frameworks (ZIF-8). In addition, good recoveries were obtained from a colorimetric/fluorescent dual-mode strategy. The constructed device demonstrated great potential as a universal platform for rapid detection of various environmental contaminants using corresponding antibodies relying on its performance of satisfactory stability, sensitivity, and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.