Abstract

A copper(I) complex of 2-acetylpyridine-N(4)-(methoxy phenyl)thiosemicarbazone was successfully synthesized and structurally characterized using Fourier transform infrared (FTIR), Ultraviolet-visible (UV-Vis) and nuclear magnetic resonance (NMR) spectroscopies, thermal gravimetric analysis (TGA) and CHN elemental analyses. The complex was converted into copper oxide in a simple, efficient, and cheap method via solid state thermal decomposition. Test of the catalytic performance of the copper(I) complex and copper oxide were in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) shows that copper oxide has a higher catalytic activity (98.7%) compared to the copper(I) complex (78.2%). Optimization of the catalyst loading revealed that 1.0 mol% of catalyst was the most optimized amount with the highest conversion (98.7%) than any other amounts, 0.5 mol% (96.8%), 1.5 mol% (95.4%) and 2.0 mol% (89.6%). Recyclability and reproducibility tests of copper oxide prove that this catalyst was very efficient, exhibit excellent reproducibility with consistent catalytic performances and could be reused four times without significant decrease in the catalytic activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.