Abstract

This work reported on the immobilization of copper metallic nanoparticles at the interface of mercaptosuccinic acid-functionalized N-acryloxysuccinimide-based monoliths. Upon photochemically-mediated free radical copolymerization of N-acryloxysuccinimide reactive monomer with ethylene glycol dimethacrylate cross-linker, reactive monoliths were obtained. Nucleophilic substitution of the N-hydroxysuccinimide moieties with allylamine, allowed for the synthesis of an olefin-functionalized monolith, as demonstrated by Raman spectroscopy. Mercaptosuccinic acid was anchored at the surface of the porous polymeric material through photochemically-driven thiol-ene “click” addition. In a final step, adsorption of copper nanoparticles at the surface of the resulting carboxylic acid functionalized monolith was achieved via two distinct pathways. It was either realized by percolation of a suspension of pre-formed copper nanoparticles through the capillary or by in situ reduction of Cu(II)Br2 salt solution preliminary flown through the monolith. After characterization of the resulting hybrids by scanning electron microscopy and energy-dispersive X-ray spectroscopy, investigations were further pursued regarding the catalytic behavior of such hybrid materials. The possibility to reduce 2-nitrophenol into the corresponding 2-aminophenol within a few minutes via a flow-through process inside the hybrid monolithic capillary was notably successfully demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call