Abstract

We report grafting of copper nanoparticles (CuNP) on plasma activated high density polyethylene (HDPE) via dithiol interlayer pointing out to the structural and magnetic properties of those composites. The as-synthesized Cu nanoparticles have been characterized by high-resolution transmission electron microscopy (HRTEM/TEM) and UV–vis spectroscopy. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), zeta potential, electron spin resonance (ESR) and SQUID magnetometry. From TEM and HRTEM analyses, it is found that the size of high purity Cu nanoparticles is (12.2±5.2)nm. It was determined that in the CuNPs, the copper atoms are arranged mostly in the (111) and (200) planes. Absorption in UV–vis region by these nanoparticles is ranging from 570 to 670nm. EDS revealed that after 1h of grafting are Cu nanoparticles homogeneously distributed over the whole surface and after 24h of grafting Cu nanoparticles tend to aggregate slightly. The combined investigation of magnetic properties using ESR spectrometry and SQUID magnetometry confirmed the presence of copper nanoparticles anchored on PE substrate and indicated ferromagnetic interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call