Abstract

The physiological function of copper(I)-metallothionein is not well understood. The respiratory function of hemocyanin, a copper(I)-containing respiratory protein found in the hemolymph of many invertebrates, has been known a long time. However, the mechanism by which Cu(I) is inserted into the oxygen-binding site of apohemocyanin is completely unknown. This investigation tests the hypothesis that copper(I)-metallothionein may act as a Cu(I) donor to apohemocyanin. To this end, copper-binding proteins and hemocyanin were purified from the digestive gland and hemolymph of the American lobster, Homarus americanus. In the presence of beta-mercaptoethanol, the copper-binding proteins can be resolved into three components on DEAE-cellulose. The first two have been characterized as metallothioneins, based on their high cysteine content and lack of aromatic amino acid residues. The cysteine content of the third component is half of that of components I and II. In the absence of beta-mercaptoethanol the three proteins elute as a single protein complex during ion-exchange chromatography. Components I and II show a strong tendency to polymerize, a process that is accompanied by the loss of protein-bound copper. The purified proteins are not capable of transferring Cu(I) to the active sites of completely copper-free apohemocyanin. They are capable, however, of transferring Cu(I) to active sites of hemocyanin containing reduced amounts of Cu(I), suggesting that the conformational state of hemocyanin is the determining factor in the Cu(I) transfer mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.