Abstract

The compositional study of suspended matter in water from rivers of different latitudes and climates has revealed that the fine fraction reflects both substrate lithology from source areas or topsoil composition along the course. Metal distribution patterns are also strongly related to the clay mineral fate in fluvial aquatic systems. For the particular case of the coastal area of the Río de la Plata estuary in South America, previous studies have, on the one hand, focused on the analysis of distribution patterns of heavy metals in bottom river sediments and, on the other hand, on the assessment of metal contents in topsoils. The present study was conducted to evaluate the Cu, Pb and Zn distribution in soils and sediments from four drainage basins crossing two differentiated geomorphologic units composed of unconsolidated materials and to understand the metal behaviour. Data used included the existent, self-produced soil and sediment data sets (grain size, organic matter and Cu, Pb and Zn contents from 124 samples). Analyses were performed by using standardised methods: grain size analysis by sieving and settling; organic matter content based on the reduction of dichromate ion followed by titration; metal content by atomic absorption spectrophotometry following acid digestion. Results and Discussion. The average (% w/w) clay and organic matter content were 45.9 ± 17.1 and 1.5 ± 1.7 for sediments and 32.0 ± 19.8, and 7.5 ± 7.6 for soils, respectively. The raw mean metal concentrations (mg-kg-1 dry weight) for sediments and soils were: Cu: 28.02 ± 27.28, 32.08 ± 21.64; Pb: 32.08 ± 46.94, 68.44 ± 69.25 and Zn: 83.09 ± 150.33, 118.22 ± 74.20, respectively. A good correlation for each clay-normalised metal concentration was found between soil and sediments using regression analysis considering average data for each basin sampling site (r > 0.89, p < 0.05). A comparison between metal concentration levels taking into account geomorphologic units by a t independent sample test showed significant differences for the normalised soil-sediment metal data (p < 0.001), responding to differences in grain size, clay mineralogy, organic matter and neoformed Fe-Mn oxide composition. A clear parenthood between the topsoils and the bottom sediments in the study area was found. The Argiudolls from the inner zone are frequently affected by rainwater erosion, which washes the fine materials with sorbed metals and carries them to the streams. These watercourses reach the flat coastal plain, where soil flooding and bottom sediment depositional processes predominate. Here, both soils and bottom sediments are enriched in clay, organic matter and metals. The topography and lithology, under the environmental conditions of a temperate and humid climate control the fate of metals within these small basins. The influence of the physical media on the distribution and fate of pollutants should not be minimised in the understanding of the governing processes from natural systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.