Abstract

Copper (Cu) isotopic analyses were performed on a set of samples from the Laacher See tephra (LST) (Eifel, Germany) to investigate whether Cu isotopes are fractionated during extreme magma differentiation and degassing. The LST represents a continuous fractional crystallization series from parental basanite through mafic to highly differentiated phonolites. Samples analyzed here include phonolites of variable degrees of differentiation, phonolite–basanite hybrid rocks formed by mixing basanite and phonolite magmas, and basanite-derived mega-crystals (i.e., clinopyroxene, amphibole, phlogopite). In addition, we analyzed a series of mafic parental lavas from surrounding volcanic centers to constrain the Cu isotopic features of the Eifel mantle. Mafic phonolites show strong depletion in Cu compared to their parental basanites from ~50 to ~3 ppm, indicating sulfide fractionation during the basanite-to-phonolite differentiation. Mass balance calculations, based on the most Cu-rich hybrid rock (δ65Cu = −0.21 ‰, [Cu] = 46.2 ppm), show that the parental basanite magmas have δ65Cu of ca. −0.21 ‰, lighter than those of the mafic phonolites (~0.11 ‰). This suggests that sulfide fractionation preferentially removes the lighter Cu isotope (63Cu) in S-saturated magmas. By contrast, all phonolites have a limited range of Cu contents (1.1 to 4.0 ppm) with no systematic variations with S, suggesting that Cu is not controlled by sulfide fractionation during the evolution of mafic to highly differentiated phonolites. The identical δ65Cu values (0.11 ± 0.03 ‰, 2SD, n = 10) of the phonolites, irrespective of highly diverse composition and extents of differentiation, indicate that fractional crystallization of silicates (e.g., plagioclase, sanidine, amphibole, pyroxene, olivine), Fe–Ti-oxides and phosphate (e.g., apatite) generates insignificant Cu isotope fractionation. The lack of correlations between δ65Cu and volatile contents (e.g., S, Cl) in the LST sequence implies that volcanic degassing causes no detectable Cu isotope fractionation of igneous rocks. Eifel basalts and mega-crystals have variable δ65Cu (−0.18 to 0.21 ‰) that are uncorrelated to MgO and Cu, suggesting that such variations were not caused by differentiation but reflect the Cu isotopic heterogeneity of the Eifel mantle source due to metasomatism by fluids derived from hydrothermally altered oceanic lithosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.