Abstract

While the transition metal copper (Cu) is an essential nutrient that is conventionally viewed as a static cofactor within enzyme active sites, a nontraditional role for Cu as a modulator of kinase signaling is emerging. We discovered that Cu is required for the activity of the autophagic kinases ULK1/2 through a direct Cu-ULK1/2 interaction. Genetic loss of the Cu transporter Ctr1 or mutations in ULK1 that disrupt Cu-binding reduced ULK1/2-dependent signaling and autophagosome complex formation. Elevated intracellular Cu levels are associated with starvation induced autophagy and sufficient to enhance ULK1 kinase activity and in turn autophagic flux. The growth and survival of lung tumors driven by KRASG12D is diminished in the absence of Ctr1, depends on ULK1 Cu-binding, and is associated with reduced autophagy levels and signaling. These findings suggest a molecular basis for exploiting Cu-chelation therapy to forestall autophagy signaling to limit proliferation and survival in cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.