Abstract

A composite film (CMC/PEI) consisting of anionic carboxymethylcellulose (CMC) and cationic polyethyleneimine (PEI) can be easily produced through the solution casting method using self-assembly based on electrostatic interaction and hydrogen bonding. Subsequently, the resulting CMC/PEI polyelectrolyte composite film with a network structure was crosslinked with divalent Cu2+ ions through ionic and coordination bonds, resulting in a strengthened Cu(II)@CMC/PEI film. The composite film was characterized based on its structural, surface, thermal, UV protection, antibacterial, and degradation aspects. The results demonstrated this film has impressive mechanical properties, remarkable solvent resistance, good antibacterial properties, and excellent UV-shielding performance by completely blocking ultraviolet light with wavelengths below 360 nm. These properties can be attributed to the presence of Cu2+ ions and PEI in the film. This work is valuable for the development of novel UV-shielding materials and should contribute to the design of carboxymethylcellulose composite films with desirable properties and exceptional performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.