Abstract

We report the role of copper iodide (CuI) nanoparticles (NPs) as a hole transport layer (HTL) in cadmium sulfide/cadmium telluride (CdS/CdTe) photovoltaics. These CuI NPs were prepared using solution processing at room temperature and used to fabricate monofacial and bifacial CdTe solar cells with different back contacts. Using CuI/Au as the back contact, the device efficiency reached to 14.8% with outstanding fill factor (FF) of 79.2%. Replacing the gold (Au) electrode with sputtered transparent indium tin oxide (ITO), a CuI/ITO back contact yielded photoconversion efficiencies (PCEs) of 11.6% and 5.5% under front and back illumination respectively. Bifacial devices (CdTe/ITO) without the CuI NP HTL have an efficiency of 7.0% and 1.0% for front and back illumination, respectively. For CuI/ITO, a current collection of 12.0 mAcm−2 was observed upon back illumination which significantly improved over an ITO-only back contact (5.0 mAcm−2). The PCE obtained from back illumination was enhanced when using CuI NPs as the HTL due to the reduced back barrier height, and improved back interface as determined by temperature dependent current vs. voltage characteristics and impedance spectroscopy analysis. The improvement in device performance of the bifacial configuration is a significant step forward toward realizing thin film photovoltaic modules which harvest energy incident on the rear of the module.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.