Abstract
The majority of ecotoxicological studies have been concerned with responses of organisms to a single contaminant. While this approach remains valid, the challenge now is to understand the way in which multiple contaminants and stressors interact to produce effects in study organisms. Here we take an integrated biological and physico-chemical approach to understand the effects of 4-nonylphenol and copper on fish (white perch, Morone americana) chemosensory behaviour. We show that a one hour exposure to 2μgL−1 nonylphenol removes chemosensory attraction to conspecific chemical cues, while exposure to 5μgL−1 copper for one hour had no significant effect on the fish's attraction to these cues. Further, we show that simultaneous exposure to both contaminants at the stated dosage and for the same duration has no significant effect on the chemosensory attraction of white perch to conspecific chemical cues suggesting that copper mediates the effect of nonylphenol on fish in this respect. Physico-chemical data show that copper ions bind to nonylphenol in water, providing a mechanistic explanation for this change in the effect of nonylphenol. Furthermore, the finding that the copper ions bind to the lone pair of O on the nonylphenol molecule offers the tantalising possibility that it is this region of the nonylphenol molecule that plays the key role in disrupting fish chemical communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.