Abstract

The peptidoglycan (PG) layer stabilizes the bacterial cell envelope to maintain the integrity and shape of the cell. Penicillin-binding proteins (PBPs) synthesize essential 4-3 cross-links in PG and are inhibited by β-lactam antibiotics. Some clinical isolates and laboratory strains of Enterococcus faecium and Escherichia coli achieve high-level β-lactam resistance by utilizing β-lactam-insensitive LD-transpeptidases (LDTs) to produce exclusively 3-3 cross-links in PG, bypassing the PBPs. In E. coli, other LDTs covalently attach the lipoprotein Lpp to PG to stabilize the envelope and maintain the permeability barrier function of the outermembrane. Here we show that subminimal inhibitory concentration of copper chloride sensitizes E. coli cells to sodium dodecyl sulfate and impair survival upon LPS transport stress, indicating reduced cell envelope robustness. Cells grown in the presence of copper chloride lacked 3-3 cross-links in PG and displayed reduced covalent attachment of Braun's lipoprotein and reduced incorporation of a fluorescent d-amino acid, suggesting inhibition of LDTs. Copper dramatically decreased the minimal inhibitory concentration of ampicillin in E. coli and E. faecium strains with a resistance mechanism relying on LDTs and inhibited purified LDTs at submillimolar concentrations. Hence, our work reveals how copper affects bacterial cell envelope stability and counteracts LDT-mediated β-lactam resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.