Abstract

The topological diversity of DNA G-quadruplexes may play a crucial role in its biological function. Reversible control over a specific folding topology was achieved by the synthesis of a chiral, glycol-based pyridine ligand and its fourfold incorporation into human telomeric DNA by solid-phase synthesis. Square-planar coordination to a CuII ion led to the formation of a highly stabilizing intramolecular metal-base tetrad, substituting one G-tetrad in the parent unimolecular G-quadruplex. For the Tetrahymena telomeric repeat, CuII -triggered switching from a hybrid-dominated conformer mixture to an antiparallel topology was observed. CuII -dependent control over a protein-G-quadruplex interaction was shown for the thrombin-tba pair (tba=thrombin-binding aptamer).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.