Abstract

Synthesis and characterization of less toxic copper indium zinc sulphide (CIS:ZnS)-alloyed quantum dots (QDs) were carried out and the ligand exchange process towards the efficiency enhancement in CIS:ZnS QD-sensitized solar cell was demonstrated. The colloidal CIS:ZnS QDs were synthesized by an inexpensive heat up method with oleic acid as the capping ligand. The optical properties were analysed through ultraviolet–visible absorption and photoluminescence emission spectroscopy. The influence of the ligand exchange process on the CIS:ZnS QD-based solar cells was analysed with the fabrication of two batches of solar cells. The ligand exchange process was confirmed from Fourier transform infrared and thermogravimetric analyses. The QD-sensitized solar cells were fabricated using a CIS:ZnS QD-loaded titania photoanode and by employing copper sulphide as the counter electrode. The photovoltaic performance of the fabricated QD solar cells was analysed through photovoltaic characterization methods (current density–voltage characteristics of the devices under the simulated solar light conditions and external quantum efficiency measurements). The ligand-exchanged QD-loaded solar cells show enhanced power conversion efficiency compared to the long chain ligand-capped CIS:ZnS QD-sensitized solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.