Abstract
Wilson disease is a genetic disorder of copper metabolism characterized by impaired biliary copper excretion. Wilson disease gene product (ATP7B) functions in copper incorporation to ceruloplasmin (Cp) and biliary copper excretion. Our previous study showed the late endosome localization of ATP7B and described the copper transport pathway from the late endosome to trans-Golgi network (TGN). However, the cellular localization of ATP7B and copper metabolism in hepatocytes remains controversial. The present study was performed to evaluate the role of Niemann-Pick type C (NPC) gene product NPC1 on intracellular copper transport in hepatocytes. We induced the NPC phenotype using U18666A to modulate the vesicle traffic from the late endosome to TGN. Then, we examined the effect of NPC1 overexpression on the localization of ATP7B and secretion of holo-Cp, a copper-binding mature form of Cp. Overexpression of NPC1 increased holo-Cp secretion to culture medium of U18666A-treated cells, but did not affect the secretion of albumin. Manipulation of NPC1 function affected the localization of ATP7B and late endosome markers, but did not change the localization of a TGN marker. ATP7B co-localized with the late endosome markers, but not with the TGN marker. These findings suggest that ATP7B localizes in the late endosomes and that copper in the late endosomes is transported to the secretory compartment via an NPC1-dependent pathway and incorporated into Cp.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.