Abstract

Two sandwich-type Cu3Cl- or Cu2{Te2Ru4(CO)10}-bridging di-TeRu5 clusters, [{TeRu5(CO)14}2Cu3Cl](2-) () and [{TeRu5(CO)14}2Cu2{Te2Ru4(CO)10}](4-) (), were obtained from the reaction of [TeRu5(CO)14](2-) with 1 equiv. of [Cu(MeCN)4][BF4] in CH2Cl2 or THF at 0 °C, respectively, depending on the solvents. The chloride-abstracted was structurally characterized to have two TeRu5 cores that were linked by a Cu3Cl moiety with two Cu-Cu bonds. If the reaction was carried out in a molar ratio of 1 : 2 at 0 or 30 °C in CH2Cl2, the structural isomers [TeRu5(μ-CO)2(CO)12(CuMeCN)2] () and [TeRu5(μ-CO)3(CO)11Cu2(MeCN)2] () were produced, respectively, as the major product. Cluster displayed a TeRu5 core with two adjacent Ru3 triangles each capped by a μ3-Cu(MeCN) fragment, while contained a TeRu5 core with one triangle Ru3 plane capped by a Cu2(MeCN)2 fragment with two Cu atoms covalently bonded. Upon heating, the isomerization of into proceeded to undergo an unusual skeletal arrangement of Cu(MeCN) and migration of CO, with the TeRu5 core remaining intact. An electrochemical study revealed that and each exhibited only one oxidation while cluster had two consecutive oxidations, suggesting significant electronic communication between the two TeRu5 metal cores in via the Cu3 moiety. This work describes the facile synthesis of a series of semiconducting Cux-bridging Te-Ru carbonyl clusters, in which the incorporation of the Cux fragments has significantly influenced their resulting structures, rearrangements, and electronic properties, which was further elucidated by DFT calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.