Abstract

This paper is the first description of natural copper-rich oxide spinels. They were found in deposits of oxidizing-type fumaroles related to the Tolbachik volcano, Kamchatka, Russia. This mineralization is represented by nine species with the following maximum contents of CuO (wt.%, given in parentheses): a new mineral thermaerogenite, ideally CuAl2O4 (26.9), cuprospinel, ideally CuFe3+2O4 (28.6), gahnite (21.4), magnesioferrite (14.7), spinel (10.9), magnesiochromite (9.0), franklinite (7.9), chromite (5.9), and zincochromite (4.8). Cuprospinel, formerly known only as a phase of anthropogenic origin, turned out to be the Cu-richest natural spinel-type oxide [sample with the composition (Cu0.831Zn0.100Mg0.043Ni0.022)Σ0.996(Fe3+1.725Al0.219Mn3+0.048Ti0.008)Σ2.000O4 from Tolbachik]. Aluminum and Fe3+-dominant spinels (thermaerogenite, gahnite, spinel, cuprospinel, franklinite, and magnesioferrite) were deposited directly from hot gas as volcanic sublimates. The most probable temperature interval of their crystallization is 600–800 °C. They are associated with each other and with tenorite, hematite, orthoclase, fluorophlogopite, langbeinite, calciolangbeinite, aphthitalite, anhydrite, fluoborite, sylvite, halite, pseudobrookite, urusovite, johillerite, ericlaxmanite, tilasite, etc. Cu-bearing spinels are among the latest minerals of this assemblage: they occur in cavities and overgrow even alkaline sulfates. Cu-enriched varieties of chrome-spinels (magnesiochromite, chromite, and zincochromite) were likely formed in the course of the metasomatic replacement of a magmatic chrome-spinel in micro-xenoliths of ultrabasic rock under the influence of volcanic gases. The new mineral thermaerogenite, ideally CuAl2O4, was found in the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption. It forms octahedral crystals up to 0.02 mm typically combined in open-work clusters up to 1 mm across. Thermaerogenite is semitransparent to transparent, with a strong vitreous lustre. Its colour is brown, yellow-brown, red-brown, brown-yellow or brown-red. The mineral is brittle, with the conchoidal fracture, cleavage is none observed. D(calc.) is 4.87 g/cm3. The chemical composition of the holotype (wt.%, electron microprobe) is: CuO 25.01, ZnO 17.45, Al2O3 39.43, Cr2O3 0.27, Fe2O3 17.96, total 100.12 wt.%. The empirical formula calculated on the basis of 4 O apfu is: (Cu0.619Zn0.422)Σ1.041(Al1.523Fe3+0.443Cr0.007)Σ1.973O4. The mineral is cubic, Fd-3m, a = 8.093(9) Å, V = 530.1(10) Å3. Thermaerogenite forms a continuous isomorphous series with gahnite. The strongest lines of the powder X-ray diffraction pattern of thermaerogenite [d, Å (I, %) (hkl)] are: 2.873 (65) (220), 2.451 (100) (311), 2.033 (10) (400), 1.660 (16) (422), 1.565 (28) (511) and 1.438 (30) (440).

Highlights

  • Oxide spinels compose one of the most studied mineral families and have numerous implications in the geosciences, chemistry and materials science [1]

  • In spite of the apparent simplicity, the spinel-type crystal structure exhibits a remarkable flexibility towards cation and anion substitutions, which results in the appearance of minerals accommodating more than two dozens of chemical elements [2]

  • The only reported Cu-rich spinel-type oxide mineral, cuprospinel, ideally CuFe2 3+ O4, is an anthropogenic phase as it has never been found in the natural environments unaffected by anthropogenic influence factors

Read more

Summary

Introduction

Oxide spinels compose one of the most studied mineral families and have numerous implications in the geosciences, chemistry and materials science [1]. Copper–bearing oxide spinels, being well studied as synthetic phases in materials science, are virtually unknown in nature. The only reported Cu-rich spinel-type oxide mineral, cuprospinel, ideally CuFe2 3+ O4 , is an anthropogenic phase as it has never been found in the natural environments unaffected by anthropogenic influence factors. Variety of magnesioferrite, it was formed in the result of a spontaneous fire of the mined copper-zinc ore [3]. These oxides have definite anthropogenic origin, as well as cuprospinel formed as an incidental product of ore processing in ancient and modern smelters [4,5]. Cuprospinel was mentioned in a volcanic material from Mahanadi, Orissa, India [6], and in ores of the Chahnaly gold deposit in SE

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call