Abstract
A method is described for the preparation of copper(II)-modified keratin-capped gold nanoclusters (AuNCs) with adjustable Au/Cu molar ratio through a two-step synthetic route. The introduction of Cu(II) is known to cause quenching of the fluorescence of such AuNCs. It is found, however, that the Cu(II) loaded AuNC (AuNC-Cu2+) display strongly enhanced peroxidase-like activity and improved chemical stability. This is assumed to be due to the synergistic effect of the gold and copper atoms and in contrast to the single components (pure AuNCs and copper ions). The kinetic parameters of the new peroxidase mimic show a higher Kcat value (12.1 × 10-4s-1) and a lower Km value (53μM) for H2O2 (compared to those of conventional AuNCs). The catalytic activity is stable and remains essentially unchanged after two months. The interactions of AuNCs with Cu(II) were characterized by fluorescence spectroscopy, UV-vis spectroscopy and X-ray photoelectron spectroscopy. Based on these findings, a glucose colorimetric assay at 452nm was developed that has a detection range from 1.6 to 800μM and a 0.26μM detection limit. Graphical abstract Copper ion-modified keratin-capped gold nanoclusters (AuNC-Cu2+) exhibit enhanced peroxidase-like activity owing to the synergistic effect of the gold and copper atoms which is in contrast to pure AuNCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.