Abstract

The facile detection of glutathione (GSH) and ovalbumin (OVA) is of great importance in biological research. Herein, a tetradentate Schiff base N, N'-bis(pyridoxal-5-phosphate)-o-phenylenediamine (L) obtained by condensing two moles of pyridoxal 5'-phosphate (PLP) with one mole of 1,2-phenylenediamine was employed for the fluorescence switch-on detection of GSH and OVA. When excited at 389nm, receptor L showed a weak emission at 454nm in an aqueous medium. The addition of GSH to the solution of L caused a significant fluorescence enhancement at 454nm. Amino acids (leucine, glycine, serine, tryptophan, homocysteine, alanine, methionine, arginine and proline) and albumins (bovine serum albumin and OVA) failed to alter the fluorescence profile of L. Receptor L can be applied to detect GSH down to 1.16 µM. However, the fluorescence emission of L was quenched upon the formation of the L-Cu2+ complex. The addition of GSH and OVA to the in-situ formed L-Cu2+ complex restored not only the fluorescence emission of L but also a noticeable fluorescence enhancement observed at 454nm. The decomplexation of L-Cu2+, along with the interaction of L with GSH and OVA is expected to suppress the conformational flexibility of L that enhanced the fluorescent intensity at 454nm. Using L-Cu2+ complex, the concentration of OVA and GSH can be detected down to 0.31 µM and 0.20 µM, respectively. Molecular docking and dynamics simulation were performed to analyze the binding mode, conformational flexibility and dynamic stability of the L-Cu2+-OVA complex. Finally, the analytical novelty of L-Cu2+ was examined by detecting GSH/OVA in real biological samples, such as human blood serum, urine, and egg white.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call