Abstract

A series of copper(II) complexes of Schiff base-derived ligands (1–7) were studied for their pro- and antioxidant behaviour in the MCF-7 human breast cancer cell line. The coordination modes of two of the copper(II) complexes were investigated by pH-potentiometry, EPR and UV–Vis spectroscopic methods. The solution studies indicated that monomeric species are present in the Cu(II) – L1 system at neutral pH, whereas dinuclear species were observed in the case of the Cu(II) – L7 system. This difference in speciation was reflected in their relative cytotoxicities with the copper(II) complex of L1, showing significant cytotoxicity against MCF-7 cells whilst the complex of L7 was inactive. In fact, only three of the seven complexes studied in this series were cytotoxic to MCF-7 cells but this cytotoxicity did not correlate with their ability to bind to DNA, cleave DNA or act as a pro-oxidant. In contrast to previous copper(II) complexes studied by our group, the compounds studied here do not appear to lead to intracellular reactive oxygen species generation at any significant level. In a yeast-based assay, all of the copper complexes had the ability to protect Saccharomyces cerevisiae against menadione-induced oxidative stress but not hydrogen peroxide-induced stress, indicating a lack of catalase activity. Given that the adaptive mechanisms induced by hypoxia in cancer cells have selective effects, with a fine-tuned protection against damage and stress of many kinds, particularly against oxidative stress, chemotherapeutic compounds which are not pro-oxidants may offer a therapeutic advantage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.