Abstract

The experimental fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectra of copper(II) and nickel(II) complexes of the deprotonated tetradentate Schiff base ligand N,N′-bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine (H2L) are compared with their corresponding theoretical ones. The applied theoretical method is based on the density functional theory and time-dependent density functional theory at the UPBE0/PBE0 levels using Def2-TZVP basis set. The computational optimised geometric parameters of the complexes are in good agreement with their corresponding experimental data. The FT-IR and UV-Vis spectra of the complexes were reproduced on the basis of their optimised structures. The vibrational assignments of some fundamental modes of the complexes are performed. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies are calculated. The analyses of the calculated electronic absorption spectra of the complexes are carried out to elucidate the electronic transitions assignments and their characters. Second-order nonlinear optical property of the complexes is evaluated by the above-mentioned theoretical method that implies much greater values for the complexes in comparison with the corresponding value of urea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.