Abstract

Abstract Two photoluminescent copper(I) iodide inorganic-organic hybrid materials have been synthesized and structurally characterized as 1D-Cu2I2(bpoe)2 (1) and 1D-Cu2I2(bbtpe-m)2 (2) (bpoe = 1,2-bis(pyridin-3-yloxy)ethane, bbtpe-m = 1,1′-(3-methylpentane-1,5-diyl)bis(1H-benzo[1,2,3]triazole). Both are chain-like structures composed of Cu2I2 rhomboid dimers connected by bidentate ligands. Their emission colors range from cyan to yellow with relatively high internal quantum yields in the solid state. The tunable band gap and emission color is achieved by varying the LUMO energies of the ligands. The structures are robust and remain stable up to T = 260 °C, and coupled with their efficient and adjustable luminescence, facile synthesis, and non-toxic nature, these compounds demonstrate potential as rare earth element (REE)-free phosphors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.