Abstract

Postsynthetic modification of nucleic acids has the advantage that the chemical development of only a few building blocks is necessary, each bearing a chosen reactive functional group that is applicable to its reactive counterpart for a variety of different labeling types. The reactive group is either linked to phosphoramidites for chemical synthesis on solid phase or attached to nucleoside triphosphates for application in primer extension experiments and PCR. Chemoselectivity is required for this strategy, together with bioorthogonality to perform these labelings in living cells or even organisms. Currently, the copper-free reactions include strain-promoted 1,3-dipolar cycloadditions, "photoclick" reactions, Diels-Alder reactions with inverse electron demand, and nucleophilic additions. The majority of these modification strategies show good to excellent reaction kinetics, an important prerequisite for labeling inside cells and in vivo in order to keep the concentrations of the reacting partners as low as possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.