Abstract

Nanomaterials are the sixth most emerging contaminants that are entering into aquatic habitat posing a risk to the inhabiting organisms. Nanoparticles of copper ferrite have been extensively used in biomedical applications. However, very limited studies are available on the cytotoxicity evaluation of copper ferrite nanoparticles (CuFe2O4NPs) on different cell lines. The current work investigates on the cytotoxicity, oxidative stress and morphological variations triggered by CuFe2O4NPs in Channel catfish ovary (CCO) cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU), lipid peroxidation (LPO), catalase (CAT), reduced glutathione (GSH), glutathione sulfotransferase (GST) and glutathione peroxidase (GPX) assays after 24 h of treatment. Dose dependent decline in cell survival was noticed in MTT and NRU assays. A significant increase in LPO, GST and GPX was observed in CCO cells exposed to CuFe2O4NPs after 24 h of treatment. However, the CAT and GSH levels in CCO cells exposed to CuFe2O4NPs decreased significantly after 24 h. The CCO cells exposed to 10 μg/mL concentration of CuFe2O4NPs for 24 h showed remarkable changes in their morphology. Further, the study also describes the detailed mechanism of toxicity of CuFe2O4NPs in other model cell lines to probe the risk of inhabiting organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call