Abstract

Intertidal animals experience cycles of tidal emersion from water and are vulnerable to copper (Cu) exposure due to anthropogenic toxicant input into marine waters. Both emersion and Cu toxicity can cause damage to physiological processes like aerobic metabolism, ammonia excretion, and osmoregulation, but the interactions of the combination of these two stressors on marine invertebrates are understudied. Mixed effects of 96 h of low and high Cu exposure (20 and 200 μg/L) followed by 6 h of tidal emersion were evaluated on the intertidal sea cucumber Cucumaria miniata. The respiratory tree accumulated the highest concentrations of Cu, followed by the introvert retractor muscle, body wall, and coelomic fluid. Emersion affected accumulation of Cu, perhaps by inhibiting excretion. 200 μg/L of Cu increased lactate production in the respiratory tree, indicative of damaged aerobic metabolism. Cu diminished ammonia excretion, but emersion increased oxygen uptake and ammonia excretion upon re-immersion. The combination of the two stressors did not have any interactive effects on metabolism or ammonia excretion. Neither Cu exposure nor emersion altered ion (sodium, potassium, calcium, magnesium) content of the coelomic fluid. Overall, results of this study suggest that Cu exposure does not alter C. miniata's high tolerance to emersion, and some potential strategies that this species uses to overcome environmental stress are illuminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call