Abstract

In this study, an all-in-one poly(methyl methacrylate) (PMMA) device integrating two novel techniques - DNA extraction employing a CuSO4/H2O2 system and DNA detection utilizing solid phase copper tape - coupled with loop-mediated isothermal amplification (LAMP) is developed for on-site pathogen detection. The CuSO4/H2O2 system, also known as Fenton-like reaction, is used to produce hydroxyl radicals, which can disrupt bacterial membranes via lipid peroxidation and release DNA at room temperature. The released DNA is subsequently amplified by LAMP reaction. The acidic environment resulting from the production of hydrogen ions in the presence of target DNA in the LAMP reaction can stimulate the color change on copper tape due to the corrosion, while the innate alkaline environment in a negative sample not containing target DNA cannot stimulate the corrosion. The fabricated PMMA device integrates all the functionalities necessary for molecular diagnostics such as DNA extraction, amplification, and detection, and a carbon paste-based heater is fabricated for LAMP reaction. Using the PMMA device, Enterococcus faecium was detected as low as 4.67×102CFU/mL within 90min. E. faecium spiked in milk was successfully detected using the all-in-one PMMA device. The equipment-free techniques for decentralized diagnostics and naked-eye readout of results coupled with the portable heater serves as a promising solution for point-of-care testing particularly in a resource-limited environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.