Abstract

We have previously shown that copper uptake and regulation in the opportunistic pathogen Candida albicans has some similarities to those in Saccharomyces cerevisiae, including the activation of the copper transporter gene CaCTR1 under low-copper conditions by the transcription factor CaMac1p. However, in this study, further analysis has shown that the actual mechanism of regulation by CaMac1p is different from that of its S. cerevisiae homologue. We demonstrate for the first time, to our knowledge, that the CaMAC1 gene is transcriptionally autoregulated in a copper-dependent manner, in contrast to ScMAC1, which is constitutively transcribed. We also demonstrate that the presence of one copper response element in the promoters of CaCTR1, CaMAC1 and the ferric/cupric reductase gene CaFRE7 is sufficient for normal levels of copper-responsive transcription. In contrast, two promoter elements are essential for normal levels of copper-dependent transcriptional activation by ScMac1p. CaMac1p is also involved in the regulation of the iron-responsive transcriptional repressor gene SFU1 and the alternative oxidase gene AOX2. This work describes a key feature of the copper uptake system in C. albicans that distinguishes it from similar processes in the model yeast S. cerevisiae. The importance of copper uptake in the environment of the human host and the implications for the disease process are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.